AI Article Synopsis

  • - The study investigates the cytotoxic effects of JM-20, a compound potentially harmful to blood cells, by assessing cell viability, morphology changes, and oxidative stress in human leukocytes and erythrocytes.
  • - Results showed that while low concentrations (10 μM) of JM-20 had a cytoprotective effect, higher concentrations (20 and 50 μM) significantly decreased leukocyte viability and increased reactive species levels, indicating potential toxicity.
  • - JM-20 demonstrated strong antioxidant properties comparable to α-tocopherol, effectively reducing lipid peroxidation and DPPH radical levels, without causing significant hemolysis, cell cycle changes, or DNA damage.

Article Abstract

JM-20 is a 1,5-benzodiazepine compound fused to a dihydropyridine fraction with different pharmacological properties. However, its potential toxic effects on blood cells have not yet been reported. Thus, the present study aimed to investigate, for the first time, the possible cytotoxicity of JM-20 through cell viability, cell cycle, morphology changes, reactive species (RS) to DCFH-DA, and lipid peroxidation in human leukocytes, its hemolytic effect on human erythrocytes, and its potential DNA genotoxicity using plasmid DNA in vitro. Furthermore, the compound's ability to reduce the DPPH radical was also measured. Human blood was obtained from healthy volunteers (30 ± 10 years old), and the leukocytes or erythrocytes were immediately isolated and treated with different concentrations of JM-20. A cytoprotective effect was exhibited by 10 μM JM-20 against 1 mM tert-butyl hydroperoxide (t-but-OOH) in the leukocytes. However, the highest tested concentrations of the compound (20 and 50 μM) changed the morphology and caused a significant decrease in the cell viability of leukocytes (p < 0.05, in comparison with Control). All tested concentrations of JM-20 also resulted in a significant increase in intracellular RS as measured by DCFH-DA in these cells (p < 0.05, in comparison with Control). On the other hand, the results point out a potent antioxidant effect of JM-20, which was similar to the classical antioxidant α-tocopherol. The IC value of JM-20 against the lipid peroxidation induced by (FeII) was 1.051 μM ± 0.21, while the IC value of α-tocopherol in this parameter was 1.065 μM ± 0.34. Additionally, 50 and 100 μM JM-20 reduced the DPPH radical in a statistically similar way to the 100 μM α-tocopherol (p < 0.05, in comparison with the control). No significant hemolysis in erythrocytes, no cell cycle changes in leukocytes, and no genotoxic effects in plasmid DNA were induced by JM-20 at any tested concentration. The in silico pharmacokinetic and toxicological properties of JM-20, derivatives, and nifedipine were also studied. Here, our findings demonstrate that JM-20 and its putative metabolites exhibit similar characteristics to nifedipine, and the in vitro and in silico data support the low toxicity of JM-20 to mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcmd.2024.102827DOI Listing

Publication Analysis

Top Keywords

human blood
8
blood cells
8
cell viability
8
jm-20
5
investigation cytotoxicity
4
cytotoxicity genotoxicity
4
genotoxicity antioxidant
4
antioxidant prospects
4
prospects jm-20
4
human
4

Similar Publications

To evaluate the efficacy of human placental extract (HPE) eye drops compared to that of carboxymethylcellulose (CMC) and human peripheral blood serum (HPBS) eye drops in a mouse model of experimental dry eye (EDE) and corneal alkali burns. EDE and alkali burn models were induced in C57BL/6 mice using desiccating stress and NaOH, respectively. In both the EDE and alkali burn models, treatment groups received CMC, HPBS, or HPE eye drops.

View Article and Find Full Text PDF

Advances in nano-delivery of phytochemicals for glioblastoma treatment.

Discov Nano

December 2024

Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.

Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone.

View Article and Find Full Text PDF

Strategies for integrating ChatGPT and generative AI into clinical studies.

Blood Res

December 2024

Department of Surgery, Division of HBP Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea.

Large language models, specifically ChatGPT, are revolutionizing clinical research by improving content creation and providing specific useful features. These technologies can transform clinical research, including data collection, analysis, interpretation, and results sharing. However, integrating these technologies into the academic writing workflow poses significant challenges.

View Article and Find Full Text PDF

Curzerenone is a major component of the traditional herbal medicine Curcumae Rhizoma with potential cancer-suppressing effects. This study aims to investigate the treatment effect of Curzerenone on cervical cancer cells and the underpinning mechanism. HeLa and SiHa cells were treated with Curzerenone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: