MSDCNN: A multiscale dilated convolution neural network for fine-grained 3D shape classification.

Neural Netw

College of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China. Electronic address:

Published: April 2024

Multi-view deep neural networks have shown excellent performance on 3D shape classification tasks. However, global features aggregated from multiple views data often lack content information and spatial relationship, which leads to difficult identification the small variance among subcategories in the same category. To solve this problem, in this paper, a novel multiscale dilated convolution neural network termed as MSDCNN is proposed for multi-view fine-grained 3D shape classification. Firstly, a sequence of views are rendered from 12-viewpoints around the input 3D shape by the sequential view capturing module. Then, the first 22 convolution layers of ResNeXt50 is employed to extract the semantic features of each view, and a global mixed feature map is obtained through the element-wise maximum operation of the 12 output feature maps. Furthermore, attention dilated module (ADM), which combines four concatenated attention dilated block (ADB), is designed to extract larger receptive field features from global mixed feature map to enhance context information among the views. Specifically, each ADB is consisted by an attention mechanism module and a dilated convolution with different dilation rates. In addition, prediction module with label smoothing is proposed to classify features, which contains 3 × 3 convolution and adaptive average pooling. The performance of our method is validated experimentally on the ModelNet10, ModelNet40 and FG3D datasets. Experimental results demonstrate the effectiveness and superiority of the proposed MSDCNN framework for 3D shape fine-grained classification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106141DOI Listing

Publication Analysis

Top Keywords

dilated convolution
12
shape classification
12
multiscale dilated
8
convolution neural
8
neural network
8
fine-grained shape
8
global mixed
8
mixed feature
8
feature map
8
attention dilated
8

Similar Publications

Accurate drug-target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug-target pairs always is by simple concatenation, which is insufficient to explore their fusion.

View Article and Find Full Text PDF

Enhancing cardiovascular disease classification in ECG spectrograms by using multi-branch CNN.

Comput Biol Med

January 2025

Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India. Electronic address:

Cardiovascular disease (CVD) is caused by the abnormal functioning of the heart which results in a high mortality rate across the globe. The accurate and early prediction of various CVDs from the electrocardiogram (ECG) is vital for the prevention of deaths caused by CVD. Artificial intelligence (AI) is used to categorize and accurately predict various CVDs.

View Article and Find Full Text PDF

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.

View Article and Find Full Text PDF

A Parallel Image Denoising Network Based on Nonparametric Attention and Multiscale Feature Fusion.

Sensors (Basel)

January 2025

School of Electronic and Information Engineering, Ankang University, Ankang 725000, China.

Convolutional neural networks have achieved excellent results in image denoising; however, there are still some problems: (1) The majority of single-branch models cannot fully exploit the image features and often suffer from the loss of information. (2) Most of the deep CNNs have inadequate edge feature extraction and saturated performance problems. To solve these problems, this paper proposes a two-branch convolutional image denoising network based on nonparametric attention and multiscale feature fusion, aiming to improve the denoising performance while better recovering the image edge and texture information.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!