Background: Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP.
Methods: We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model.
Results: There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS.
Conclusions: There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2024.01.005 | DOI Listing |
Am J Hum Genet
January 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical Power and Machines Engineering, Higher Institute of Engineering (HIE), El-Shorouk Academy, El-Shorouk City, Egypt.
Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various innovative applications such as electric vehicles. This paper proposes a new reinforcement learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3) algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The main purpose of the control methodology is to optimize the 5ph-IPMSM speed response either in constant torque region or constant power region.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Dublin 2, Ireland.
Background: Amyotrophic lateral sclerosis (ALS) shares pathological and genetic underpinnings with frontotemporal dementia (FTD). ALS manifests with diverse symptoms, including progressive neuro-motor degeneration, muscle weakness, but also cognitive-behavioural changes in up to half of the cases. Resting-state EEG measures, particularly spectral power and functional connectivity, have been instrumental for discerning abnormal motor and cognitive network function in ALS [1]-[3].
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Texas Health Science Center, Fort Worth, TX, USA.
Background: The concept of motoric cognitive risk (MCR) combines subjective cognitive concern (SCC) with slowed gait speed. The concept allows for the incorporation of cognitive and functional slowing into a measure of risk assessment. This study explores differences in cognitive functioning in cognitively unimpaired older adults with MCR and those without subjective cognitive concern and without slow gait speed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!