In order to analyze the differences between the master curves of relaxation modulus E(t) and creep compliance J(t) obtained from discrete and continuous spectrum models, and to comprehensively evaluate the effect of basalt fiber content on the viscoelastic behavior of asphalt mixtures, complex modulus tests were conducted for asphalt mixtures with fiber content of 0%, 0.1%, 0.2% and 0.3%, respectively. Consequently, the master curves of Viscoelastic Parameters of asphalt mixtures were constructed according to the generalized Sigmoidal model(GSM) and the approximate Kramers-Kronig (K-K) relationship. Then, transformation of master curves using discrete and continuous spectrum models to obtain the models of E(t) and J(t) containing all viscoelastic information. Also, the accuracy of the models of E(t) and J(t) was evaluated. The results show that the addition of basalt fibers improves the strength, stress relaxation and deformation resistance of asphalt mixtures. It is worth noting that basalt fibers achieve the improvement of asphalt mixtures by changing their internal structure. Considering the different viscoelastic master curves at four dosages, the optimum fiber dosage was 0.2%. In addition, both discrete and continuous model conversion methods can obtain high accuracy conversion results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833572PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296087PLOS

Publication Analysis

Top Keywords

asphalt mixtures
24
discrete continuous
16
master curves
16
continuous spectrum
12
spectrum models
12
viscoelastic behavior
8
basalt fiber
8
fiber content
8
basalt fibers
8
asphalt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!