Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis. Nonetheless, a comprehensive study of proteins and metabolites produced specifically in the SMO and their functional roles has been lacking. Here, we pioneer a deep discovery proteomic and targeted metabolomic screen of the SMO in comparison to the remainder of the embryo using high-resolution mass spectrometry (HRMS). Quantification of ~4,600 proteins and a panel of targeted metabolites documented differential expression for 460 proteins and multiple intermediates of energy metabolism in the SMO. Upregulation of oxidative phosphorylation and redox regulatory proteins gave rise to elevated oxidative stress and an accumulation of reactive oxygen species in the SMO. Imaging experiments corroborated these findings, discovering enrichment of hydrogen peroxide in the SMO. Chemical perturbation of the redox gradient perturbed mesoderm involution during early gastrulation. HRMS expands the bioanalytical toolbox of cell and developmental biology, providing previously unavailable information on molecular classes to challenge and refine our classical understanding of the Organizer and its function during early patterning of the embryo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861879 | PMC |
http://dx.doi.org/10.1073/pnas.2311625121 | DOI Listing |
Clin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFGeroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.
View Article and Find Full Text PDFJ Neurochem
January 2025
Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University Bochum, Bochum, Germany.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!