Multisite λ-dynamics (MSLD) is a highly efficient binding free energy calculation method that samples multiple ligands in a single round by assigning different λ values to the alchemical part of each ligand. This method holds great promise for lead optimization (LO) in drug discovery. However, the complex data preparation and simulation process limits its widespread application in diverse protein-ligand systems. To address this challenge, we developed a comprehensive, open-source, and automated workflow for MSLD calculations based on the BLaDE dynamics engine. This workflow incorporates the Ligand Internal and Cartesian coordinate reconstruction-based alignment algorithm (LIC-align) and an optimized maximum common substructure (MCS) search algorithm to accurately generate MSLD multiple topologies with ideal perturbation patterns. Furthermore, our workflow is highly modularized, allowing straightforward integration and extension of various simulation techniques, and is highly accessible to nonexperts. This workflow was validated by calculating the relative binding free energies of large-scale congeneric ligands, many of which have large perturbing groups. The agreement between the calculations and experiments was excellent, with an average unsigned error of 1.08 ± 0.47 kcal/mol. More than 57.1% of the ligands had an error of less than 1.0 kcal/mol, and the perturbations of 6 targets were fully connected via the calculations, while those of 2 targets were connected via both calculations and experimental data. The Pearson correlation coefficient reached 0.88, indicating that the MSLD workflow provides accurate predictions that can guide lead optimization in drug discovery. We also examined the impact of single-site versus multisite perturbations, ligand grouping by perturbing group size, and the position of the anchor atom on the MSLD performance. By integrating our proposed LIC-align and optimized MCS search algorithm along with the coping strategies to handle challenging molecular substructures, our workflow can handle many realistic scenarios more reasonably than all previously published methods. Moreover, we observed that our MSLD workflow achieved similar accuracy to free energy perturbation (FEP) while improving computational efficiency by over 1 order of magnitude in speedup. These findings provide valuable insights and strategies for further MSLD development, making MSLD a competitive tool for lead optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c01154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!