Complex analysis of plant extracts usually requires a combination of several analytical approaches. Therefore, in this study, we developed a holistic two-injection approach for plant extract analysis, which is carried out within one instrument without the need for any manual intervention during the analysis. Ultrahigh-performance supercritical fluid chromatography (UHPSFC) was employed for the analysis of 17 volatile terpenes on a porous graphitic carbon column within 7.5 min, followed by analysis on short diol column where flavonoids, phenolic acids, and terpenoic acids were analyzed within 15.5 min. A multimodal ionization source combining electrospray and atmospheric pressure chemical ionization (ESCi) was selected for mass spectrometry detection as a simultaneous ionization of both lipophilic and polar compounds was required. The quantitative aspects of the final UHPSFC-ESI/ESCi-MS/MS two-injection approach were determined, and it was applied to the analysis of extracts prepared by supercritical fluid extraction. Current methods reported in the literature typically require a labor-intensive combination of liquid and gas chromatography for the complex analysis of plant extracts. We present for the first time a new UHPSFC approach requiring only a single instrument that provides an alternative approach to the analysis of complex plant extracts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882571PMC
http://dx.doi.org/10.1021/acs.analchem.3c03599DOI Listing

Publication Analysis

Top Keywords

plant extracts
16
supercritical fluid
12
analysis
9
ultrahigh-performance supercritical
8
mass spectrometry
8
complex plant
8
complex analysis
8
analysis plant
8
two-injection approach
8
plant
5

Similar Publications

Development and validation of a UV-Vis spectrophotometric method for estimation of total content of chalcone.

MethodsX

June 2025

Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, Coimbra, Portugal.

In this study, a straightforward spectrophotometric method was developed for quantifying the total content of chalcones in a sample. The method exhibits linearity, accuracy, precision, repeatability, and enables the estimation of total chalcone content in trans-chalcone equivalents for a sample diluted in carbon tetrachloride and added to antimony pentachloride. The analytical wavelength was determined to be 390 nm.

View Article and Find Full Text PDF

Study on Antibacterial Activities of and Leaf Extracts Against Some Human Pathogens.

ScientificWorldJournal

January 2025

Department of Biology, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia.

The present study was aimed to verify the medicinal value of and traditionally used to treat human and animal ailments in Ethiopia. Fresh leaves of these species were collected, dried under shade, and ground into fine powder. The extraction was carried out by the maceration method using methanol as a solvent.

View Article and Find Full Text PDF

Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.

View Article and Find Full Text PDF

Background: Oily skin not only threatens people with aesthetic and hygienic discomfort but also confronts them with annoying skin problems. To explore new skin care ingredients from herbal or plant extracts and understand their underlying mechanism for sebum control would assist in the discovery of desirable sebosuppressive agents, though it is still a deserving and challenging task.

Aim: To explore the effect of Camellia saponin (CS) on modulating the lipogenesis of human sebocytes.

View Article and Find Full Text PDF

Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!