Ionic mechanisms of excitation in Paramecium.

Annu Rev Biophys Bioeng

Published: October 1979

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.bb.08.060179.002033DOI Listing

Publication Analysis

Top Keywords

ionic mechanisms
4
mechanisms excitation
4
excitation paramecium
4
ionic
1
excitation
1
paramecium
1

Similar Publications

In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.

View Article and Find Full Text PDF

Rhodamine B embedded silver nanogranules for selective sensing of l-cysteine.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India. Electronic address:

Sensing of amino acid serves as the frontier research area for early diagnosis and monitoring various diseases. Among various amino acids, the sensing of L-Cysteine is much important for detection of human diseases like neurotoxic effect and coronary heart disease which arises due to excess of L-Cysteine. To address this, we propose a very simple method of L-Cys sensing via fluorescence "TURN ON" mechanism involving silver centred Rhodamine B nanogranules (AgNPs/RhB) stabilized via electrostatic interaction.

View Article and Find Full Text PDF

All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.

View Article and Find Full Text PDF

Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.

View Article and Find Full Text PDF

Functional nanocellulose hydrogel with amino acid integration for enhanced Li/Fe separation in LiFePO batteries.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China. Electronic address:

With the rising prevalence of lithium-ion batteries, efficient recovery of metal ions, particularly those potentially released from LiFePO anodes, has become critical. Given that both Fe and Li ions can form electrostatic adsorptive interactions, achieving effective separation of conventional adsorbent materials becomes challenging. This study presents an amino acid-functionalized nanocellulose hydrogel (ANH) synthesized by incorporating L-threonine, which significantly enhances the selective adsorption of Fe in a mixed-ion environment by leveraging coordination differences between Li and Fe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!