A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cancer detection and classification using a simplified binary state vector machine. | LitMetric

Cancer detection and classification using a simplified binary state vector machine.

Med Biol Eng Comput

Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.

Published: May 2024

Cancer is an invasive and malignant growth of cells and is known to be one of the most fatal diseases. Its early detection is essential for decreasing the mortality rate and increasing the probability of survival. This study presents an efficient machine learning approach based on the state vector machine (SVM) to diagnose and classify tumors into malignant or benign cancer using the online lymphographic data. Further, two types of neural network architectures are also implemented to evaluate the performance of the proposed SVM-based approach. The optimal structures of the classifiers are obtained by varying the architecture, topology, learning rate, and kernel function and recording the results' accuracy. The classifiers are trained with the preprocessed data examples after noise removal and tested on the unknown cases to diagnose each example as positive or negative. Further, the positive cases are classified into different stages including metastases, malign lymph, and fibrosis. The results are evaluated against the feed-forward and generalized regression neural networks. It is found that the proposed SVM-based approach significantly improves the early detection and classification accuracy in comparison to the experienced physicians and the other machine learning approaches. The proposed approach is robust and can perform sub-class divisions for multipurpose tasks. Experimental results demonstrate that the two-class SVM gives the best results and can effectively be used for the classification of cancer. It has outperformed all other classifiers with an average accuracy of 94.90%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-03012-9DOI Listing

Publication Analysis

Top Keywords

detection classification
8
state vector
8
vector machine
8
early detection
8
machine learning
8
proposed svm-based
8
svm-based approach
8
cancer
4
cancer detection
4
classification simplified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!