A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of Distinct Bladder Pain Phenotypes Utilizing the MAPP Research Network Cohort. | LitMetric

Validation of Distinct Bladder Pain Phenotypes Utilizing the MAPP Research Network Cohort.

Int Urogynecol J

Department of Urology, Division of Pelvic Medicine and Reconstructive Surgery, David Geffen School of Medicine at the University of California, Los Angeles, Box 951738, Los Angeles, CA, 90095-1738, USA.

Published: March 2024

Introduction And Hypothesis: As interstitial cystitis/bladder pain syndrome (IC/BPS) likely represents multiple pathophysiologies, we sought to validate three clinical phenotypes of IC/BPS patients in a large, multi-center cohort using unsupervised machine learning (ML) analysis.

Methods: Using the female Genitourinary Pain Index and O'Leary-Sant Indices, k-means unsupervised clustering was utilized to define symptomatic phenotypes in 130 premenopausal IC/BPS participants recruited through the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research network. Patient-reported symptoms were directly compared between MAPP ML-derived phenotypic clusters to previously defined phenotypes from a single center (SC) cohort.

Results: Unsupervised ML categorized IC/BPS participants into three phenotypes with distinct pain and urinary symptom patterns: myofascial pain, non-urologic pelvic pain, and bladder-specific pain. Defining characteristics included presence of myofascial pain or trigger points on examination for myofascial pain patients (p = 0.003) and bladder pain/burning for bladder-specific pain patients (p < 0.001). The three phenotypes were derived using only 11 features (fGUPI subscales and ICSI/ICPI items), in contrast to 49 items required previously. Despite substantial reduction in classification features, unsupervised ML independently generated similar symptomatic clusters in the MAPP cohort with equivalent symptomatic patterns and physical examination findings as the SC cohort.

Conclusions: The reproducible identification of IC/BPS phenotypes, distinguishing bladder-specific pain from myofascial and genital pain, using independent ML analysis of a multicenter database suggests these phenotypes reflect true pathophysiologic differences in IC/BPS patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023803PMC
http://dx.doi.org/10.1007/s00192-024-05735-1DOI Listing

Publication Analysis

Top Keywords

myofascial pain
12
pain
11
mapp network
8
ic/bps participants
8
pelvic pain
8
bladder-specific pain
8
pain patients
8
phenotypes
5
validation distinct
4
distinct bladder
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!