We successfully demonstrated an intelligent adaptive beam alignment scheme using a reinforcement learning (RL) algorithm integrated with an 8 × 8 photonic array antenna operating in the 40 GHz millimeter wave (MMW) band. In our proposed scheme, the three key elements of RL: state, action, and reward, are represented as the phase values in the photonic array antenna, phase changes with specified steps, and an obtained error vector magnitude (EVM) value, respectively. Furthermore, thanks to the Q-table, the RL agent can effectively choose the most suitable action based on its prior experiences. As a result, the proposed scheme autonomously achieves the best EVM performance by determining the optimal phase. In this Letter, we verify the capability of the proposed scheme in single- and multiple-user scenarios and experimentally demonstrate the performance of beam alignment to the user's location optimized by the RL algorithm. The achieved results always meet the signal quality requirement specified by the 3rd Generation Partnership Project (3GPP) criterion for 64-QAM orthogonal frequency division multiplexing (OFDM).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.502638DOI Listing

Publication Analysis

Top Keywords

beam alignment
12
array antenna
12
proposed scheme
12
adaptive beam
8
photonic array
8
reinforcement learning-based
4
learning-based adaptive
4
alignment photodiode-integrated
4
photodiode-integrated array
4
antenna module
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!