We propose a scheme for generating nonreciprocal strong mechanical squeezing by using two-tone lasers to drive a spinning optomechanical system. For given driving frequencies, strong mechanical squeezing of the breathing mode in the spinning resonator can be achieved in a chosen driving direction but not in the other. The nonreciprocity originates from the Sagnac effect caused by the resonator's spinning. We also find the classical nonreciprocity and the quantum nonreciprocity can be switched by simply changing the angular velocity of the spinning resonator. We show that the scheme is robust to the system's dissipations and the mechanical thermal noise. This work may be meaningful for the study of nonreciprocal device and quantum precision measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.510053DOI Listing

Publication Analysis

Top Keywords

strong mechanical
12
mechanical squeezing
12
nonreciprocal strong
8
spinning resonator
8
mechanical
4
squeezing based
4
based sagnac
4
sagnac two-tone
4
two-tone driving
4
driving propose
4

Similar Publications

Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.

View Article and Find Full Text PDF

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Age-related cognitive decline is a complex phenomenon that is influenced by various neurobiological processes at the molecular, cellular, and tissue levels. The extent of this decline varies between individuals and the underlying determinants of these differences are not fully understood. Two of the most prominent signs of cognitive decline in aging are the deterioration of episodic memory, which is a hallmark of Alzheimer's disease (AD), and the nearly always accompanying atrophy of the medial temporal lobe.

View Article and Find Full Text PDF

G-Protein Coupled Receptor, Class C, Group 5, Member A (GPRC5A) has been extensively studied in lung and various epithelial cancers. Nevertheless, its role in the skin remains to be elucidated. In this study, we sought to investigate the function of this receptor in skin biology.

View Article and Find Full Text PDF

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!