Application of GaS nanotubes as efficient catalysts in photocatalytic hydrolysis: a first principles study.

Phys Chem Chem Phys

School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.

Published: February 2024

Photocatalytic hydrogen production is a promising and sustainable technology that converts solar energy into hydrogen energy with the assistance of semiconductor photocatalysts. Herein, we investigated the geometric structure and electronic and photocatalytic properties of single-walled GaS nanotubes under the framework of density functional theory with HSE06 as an exchange-correlation function. This paper presents the first study on the geometric structure, electron, and photocatalytic properties of single-walled GaS nanotubes. The results show that the strain energy and formation energy of GaS nanotubes decrease, while the structure is more stable, with increasing radius. Our study shows that after rolling from the slab, the nanotubes undergo a transition from an indirect band gap to a direct band gap and have appropriate band gaps for absorbing visible light. Moreover, it is speculated that the large disparity between the effective mass of electrons and holes can reduce charge carrier recombination. Among them, the nanotube with a diameter larger than (35, 0) showed promising band edge positions for photocatalytic hydrolysis redox potential with pH values between 0 and 7. Based on these properties, we believe that GaS nanotubes will be promising in photocatalytic hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp06072aDOI Listing

Publication Analysis

Top Keywords

gas nanotubes
20
photocatalytic hydrolysis
12
geometric structure
8
photocatalytic properties
8
properties single-walled
8
single-walled gas
8
band gap
8
nanotubes
6
photocatalytic
6
application gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!