In nature, many organisms experience a daily range of body temperatures. Thermal performance at stable temperatures is often extrapolated to predict function in cyclical environments. However, temperature order and cyclicity may influence physiological processes. The current study compared energy intake, digestive passage time and energy budgets at a stable temperature (33°C) and two temperature cycles in lizards (Sceloporus consobrinus), to determine (1) whether stable treatments adequately project performance in a cycling environment and (2) whether temperature order influences performance. Cycles had a mean temperature of 33°C, and rotated through 30°C, 33°C and 36°C daily, with equal durations of time at each temperature but differing temperature order, with warm days and cool nights in cycle 1 and cool days and warm nights in cycle 2. For analyses, performance in the stable treatment was compared with that during cycles. If temperature is the primary factor regulating performance, then performance from the stable treatment and cycles should compare favorably. However, physiological performance varied based on temperature treatment. Energy intake and budgets were similar between the stable trial and cycle 1 but not cycle 2. However, passage time did not differ. Notably, the two cycling regimes consistently varied in performance, indicating that temperature order plays a primary role in regulating performance. Physiological data collection requires careful consideration of effects of cycling versus stable temperature treatments. Stable temperatures do not consistently represent performance in cycling regimes and consideration should be paid not only to which temperatures animals experience but also to how temperature is experienced in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.247006 | DOI Listing |
J Chem Theory Comput
January 2025
Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
Time-averaged restraints from nuclear magnetic resonance (NMR) measurements have been implemented in the UNRES coarse-grained model of polypeptide chains in order to develop a tool for data-assisted modeling of the conformational ensembles of multistate proteins, intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs), many of which are essential in cell biology. A numerically stable variant of molecular dynamics with time-averaged restraints has been introduced, in which the total energy is conserved in sections of a trajectory in microcanonical runs, the bath temperature is maintained in canonical runs, and the time-average-restraint-force components are scaled up with the length of the memory window so that the restraints affect the simulated structures. The new approach restores the conformational ensembles used to generate ensemble-averaged distances, as demonstrated with synthetic restraints.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Electronic Information, Huzhou College Huzhou 313000 China
Two-dimensional (2D) ferromagnetic (FM) semiconductors hold great promise for the next generation spintronics devices. By performing density functional theory first-principles calculations, both CeF and CeFCl monolayers are studied, our calculation results show that CeF is a FM semiconductor with sizable magneto-crystalline anisotropy energy (MAE) and high Curie temperature (290 K), but a smaller band gap and thermal instability indicate that it is not applicable at higher temperature. Its isoelectronic analogue, the CeFCl monolayer, is a bipolar FM semiconductor, its dynamics, elastic, and thermal stability are confirmed, our results demonstrate promising applications of the CeFCl monolayer for next-generation spintronic devices owing to its high Curie temperature (200 K), stable semiconducting features, and stability.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China.
This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.
View Article and Find Full Text PDFSyst Rev
January 2025
Weill Cornell Medicine, Department of Medicine, 525 E 68th St, New York, NY, 10065, USA.
Background: Extreme heat events (EHEs), driven by anthropogenic climate change, exacerbate the risk of cardiovascular disease (CVD), although the underlying mechanisms are unclear. A possible mechanism leading to heat-related CVD is disturbances in sleep health, which can increase the risk of hypertension, and is associated with ideal cardiovascular health. Thus, our objective was to systematically review the peer-reviewed literature that describes the relationship between EHEs, sleep health, and cardiovascular measures and outcomes and narratively describe methodologies, evidence, and gaps in this area in order to develop a future research agenda linking sleep health, EHEs, and CVD.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!