Elucidation of the reaction mechanism concerning the oxidation above the face and at the edge of a large, oxidized graphene (GO) cluster, namely CHO, by molecular oxygen in the first excited state (Δ) was achieved with quantum mechanical calculations using the ONIOM two-layer method. Oxidation on the face of the aforementioned cluster leads to the formation of an ozone molecule, whereas oxygen molecule attack at the edge of the oxidized graphene surface either launches an ozonide -a five-membered ring species- formation during its outward approach or an 1,3-dioxetane -a four-membered ring species- production along its inward invasion. A detailed examination of the proposed pathways suggests that the ozonide formation should overcome almost one and a half times an adiabatic energy barrier with respect to the ozone production and is strongly exergonic by up to -50.1 kcal mol, supporting the experimental findings that both compounds are critically involved in the explosive deoxygenation of GO. On the other hand, the 1,3-dioxetane alternative pathway is considered even more exergonic, although it requires an overwhelming adiabatic energy barrier of 29.8 kcal mol to accomplish its target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827694 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e24072 | DOI Listing |
J Chem Theory Comput
January 2025
Exscientia, Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K.
The development of machine-learning (ML) potentials offers significant accuracy improvements compared to molecular mechanics (MM) because of the inclusion of quantum-mechanical effects in molecular interactions. However, ML simulations are several times more computationally demanding than MM simulations, so there is a trade-off between speed and accuracy. One possible compromise are hybrid machine learning/molecular mechanics (ML/MM) approaches with mechanical embedding that treat the intramolecular interactions of the ligand at the ML level and the protein-ligand interactions at the MM level.
View Article and Find Full Text PDFSci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Sahyadri Science College, Shivamogga, Karnataka, 574146, India.
Newly synthesized 1-bromo-2-(4-bromophenylsulfonate)-4,4-dimethyl-1-cyclohexenyl-6-one (CHD) as a potential anticorrosive agent in an acidic medium at an elevated temperature range of 305-335 K. This synthesized compound confirmed by spectral characterizations and it acts as a coating on mild steel surfaces in 1 M Hydrochloric acid (HCl) solution through electrochemical reactions. The synthesis of the compound has been discussed, and the Infrared (IR) and Nucleic Magnetic Resonance (NMR) spectral analysis confirmed the derivative.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Manipulating elastic waves in lower-dimensional mechanical metamaterials has attracted much attention since it lays the foundation for the design of various elastic functional devices, especially for on-chip size. However, due to the experimental challenges, it is very difficult to control elastic waves in higher dimensions. In this Letter, we introduce an extra structural parameter to synthesize and investigate the on-chip Weyl physics in silicon-on-insulator system.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
The computational search for new stable inorganic compounds is faster than ever, thanks to high-throughput density functional theory (DFT). However, stable compound searches remain highly expensive because of the enormous search space and the cost of DFT calculations. To aid these searches, recommendation engines have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!