Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828030 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1337152 | DOI Listing |
BioTech (Basel)
November 2024
Department of Plant Sciences, University of California, Davis, CA 95616, USA.
Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea.
Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice ( L.
View Article and Find Full Text PDFSci Rep
August 2024
Misión Biológica de Galicia, Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Avda Vigo S/N, 15705, Santiago de Compostela, La Coruña, Spain.
In recent decades an extensive mortality and decline of Quercus suber populations mainly caused by Phytophthora cinnamomi has been observed. In the current study, a chestnut gene homologous to ginkbilobin-2 (Cast_Gnk2-like), which in Ginkgo biloba codifies an antifungal protein, was transferred into cork oak somatic embryos of three different embryogenic lines by Agrobacterium mediated transformation. The transformation efficiency varied on the genotype from 2.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States.
Introduction: Citrus canker, caused by subsp. citri (), is a devastating disease worldwide. Previously, we successfully generated canker-resistant cv.
View Article and Find Full Text PDFProtoplasma
November 2024
Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
Cryopreservation is a reliable technique for the long-term storage and preservation of embryogenic cells, maintaining their viability without loss of their embryogenic capacity. However, the large-scale conservation of grapevine embryogenic lines in cryobanks remains limited. A significant challenge is understanding somatic cell rejuvenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!