In this study, a highly efficient peroxymonosulfate (PMS) activator, ZnO/ZnMn O , was synthesized using a simple one-step hydrothermal method. The resulting bimetallic oxide catalyst demonstrated a homogenous and high-purity composition, showcasing synergistic catalytic activity in activating PMS for degrading 2, 4-dichlorophenol (2, 4-DCP) in aqueous solution. This catalytic performance surpassed that of individual ZnO, Mn O , and ZnMn O metal materials. Under the optimized conditions, the removal efficiency of 2, 4-DCP reached approximately 86% within 60 min, and the catalytic ability remained almost constant even after four cycles of recycling. The developed degradation system proved effective in degrading other azo-dye pollutants. Certain inorganic anions such as HPO , HCO , and NO significantly inhibited the degradation of 2, 4-DCP, while Cl and SO did not exhibit such interference. Results from electrochemical experiments indicated that the electron transfer ability of ZnO/ZnMn O surpassed that of individual metals, and electron transfer occurred between ZnO/ZnMn O and the oxidant. The primary active radicals responsible for degrading 2, 4-DCP were identified as SO , OH and O , generated through the oxidation and reduction of PMS catalyzed by Zn (II) and Mn (III). Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the fresh and used catalysts revealed that the exceptional electron transfer ability of ZnO facilitated the valence transfer of Mn (III) and the transfer of electrons to the catalyst's oxygen surface, thus enhancing the catalytic efficiency. The analysis of radicals and intermediates indicates that the two main pathways for degrading 2, 4-DCP involve hydroxylation and radical attack on its aromatic ring. PRACTITIONER POINTS: A bimetallic ZnO/ZnMn O catalyst was synthesized and characterized. ZnO/ZnMn O can synergistically activate PMS to degrade 2, 4-DCP compared with single metal oxide. Three primary active radicals, O , OH, and SO , were generated to promote the degradation. ZnO promoted electron transfer among the three species of Mn to facilitate oxidizing pollutants. Hydroxylation and radical attack on the aromatic ring of 2, 4-DCP are the two degradation pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.10984 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.
This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!