We explore the synchronization of chaotic microresonator frequency combs, emphasizing the modulation instability state, which is known for its inherent chaotic behaviors. Our study confirms that the synchronization of two such combs is feasible by injecting the output from the lead microresonator into the next microresonator's input. We also identify the optimal parameters for this synchronization. Remarkably, even partial injection from the leader is sufficient for synchronization, paving the way for versatile future system configurations. Such systems could simultaneously utilize distinct spectral components for synchronization and transmission. This work advances our understanding of chaotic microresonator combs, showing them to be pivotal elements in next-generation optical communication systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.511097DOI Listing

Publication Analysis

Top Keywords

chaotic microresonator
12
synchronization chaotic
8
microresonator frequency
8
frequency combs
8
synchronization
6
microresonator
4
combs
4
combs explore
4
explore synchronization
4
combs emphasizing
4

Similar Publications

Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air.

Microsyst Nanoeng

January 2025

Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Shandong, 250100, P. R. China.

Acoustic frequency combs (AFCs) contain equidistant coherent signals with unconventional possibilities on metrology. Previously, implementation of AFCs on mechanical microresonators with large air damping loss is difficult, which restricted their atmospheric applications. In this work, we explore the potentials of a composite diamond/silicon microcantilever for parametric generation of AFCs in ambient air.

View Article and Find Full Text PDF

We explore the nonlinear interactions of an optomechanical microresonator driven by two external optical signals. Optical whispering-gallery waves are coupled to acoustic surface waves of a fused silica medium in the equatorial plane of a generic microresonator. The system exhibits coexisting attractors whose behaviors include limit cycles, steady states, tori, quasi-chaos, and fully developed chaos with ghost orbits of a known attractor.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a parallel pulsed chaos light detection and ranging (LiDAR) system with a high peak power, parallelism, and anti-interference. The system generates chaotic microcombs based on a chip-scale SiN microresonator. After passing through an acousto-optic modulator, the continuous-wave chaotic microcomb can be transformed into a pulsed chaotic microcomb, in which each comb line provides pulsed chaos.

View Article and Find Full Text PDF

We explore the synchronization of chaotic microresonator frequency combs, emphasizing the modulation instability state, which is known for its inherent chaotic behaviors. Our study confirms that the synchronization of two such combs is feasible by injecting the output from the lead microresonator into the next microresonator's input. We also identify the optimal parameters for this synchronization.

View Article and Find Full Text PDF

Microresonators are micron-scale optical systems that confine light using total internal reflection. These optical systems have gained interest in the past two decades due to their compact sizes, unprecedented measurement capabilities, and widespread applications. The increasingly high finesse (or Q factor) of such resonators means that nonlinear effects are unavoidable even for low power, making them attractive for nonlinear applications, including optical comb generation and second harmonic generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!