In the long-wave infrared (LWIR) range, where, due to wavelength scaling, the critical power of Kerr self-focusing P in air increases to 300-400 GW, we demonstrate that without external focusing a train of picosecond CO laser pulses can propagate in the form of a single several-centimeter diameter channel over hundreds of meters. The train of 10 µm pulses, for which the total energy ≥20 J is distributed over several near-terawatt picosecond pulses with a maximum power ≤2P, is generated naturally during short pulse amplification in a CO laser. It is observed that the high-power 10 µm beam forms a large diameter "hot gas" channel in the ambient air with a ≥ 50 ms lifetime. Simulations of the experiment show that such filamentation-free self-channeling regime has low propagation losses and can deliver multi-Joule/TW-power LWIR pulses over km-scale distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.512074 | DOI Listing |
In the long-wave infrared (LWIR) range, where, due to wavelength scaling, the critical power of Kerr self-focusing P in air increases to 300-400 GW, we demonstrate that without external focusing a train of picosecond CO laser pulses can propagate in the form of a single several-centimeter diameter channel over hundreds of meters. The train of 10 µm pulses, for which the total energy ≥20 J is distributed over several near-terawatt picosecond pulses with a maximum power ≤2P, is generated naturally during short pulse amplification in a CO laser. It is observed that the high-power 10 µm beam forms a large diameter "hot gas" channel in the ambient air with a ≥ 50 ms lifetime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!