A spatiotemporal diffractive deep neural network (STD2NN) is proposed for spatiotemporal signal processing. The STD2NN is formed by gratings, which convert the signal from the frequency domain to the spatial domain, and multiple layers consisting of spatial lenses and space light modulators (SLMs), which conduct spatiotemporal phase modulation. An all-optical backpropagation (BP) algorithm for SLM phase tuning is proposed, with the gradient of the loss function computed by the inner product of the forward propagating optical field and the backward propagating conjugated error field. As a proof of concept, a spatiotemporal word "OPTICA" is generated by the STD2NN. Afterwards, a spatiotemporal optical vortex (STOV) beam multiplexer based on the STD2NN is demonstrated, which converts the spatially separated Gaussian beams into the STOV wave-packets with different topological charges. Both cases illustrate the capability of the proposed STD2NN to generate and process the spatiotemporal signals.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.494999DOI Listing

Publication Analysis

Top Keywords

spatiotemporal diffractive
8
diffractive deep
8
deep neural
8
spatiotemporal
7
std2nn
5
neural networks
4
networks spatiotemporal
4
neural network
4
network std2nn
4
std2nn proposed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!