We report a real-time 150 kbps stealth transmission within public optical communication of 10 Gbps dual polarization QPSK. The stealth data is modulated onto the frequency tuning signals of a fast-tuning laser source in the transmitter, which causes slight frequency dithering for the transmitted optical signal. In the receiver, the stealth receiver recovers the stealth data from the estimated frequency offset by the QPSK DSP algorithm. The experiments show the stealth transmission has few impacts on the public channel over a 300 km distance. The proposed method is fully compatible with existing optical transmission systems, and the only hardware change is to upgrade the transmitter laser to support frequency tuning through an external analog port for receiving stealth signal. The proposed stealth scheme can combine with cryptographic protocols to improve the integrated security of the system, and can be used as signaling transport for low level network control to reduce the communication overhead.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.510354DOI Listing

Publication Analysis

Top Keywords

optical transmission
8
frequency dithering
8
stealth transmission
8
stealth data
8
frequency tuning
8
stealth
7
frequency
5
real-time stealth
4
optical
4
stealth optical
4

Similar Publications

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Mimicking Axon Growth and Pruning by Photocatalytic Growth and Chemical Dissolution of Gold on Titanium Dioxide Patterns.

Molecules

December 2024

Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!