Based on enhanced Vernier effect, a compact fiber sensor with ultrahigh sensitivity is proposed for simultaneous transverse load (TL) and temperature measurements. A single mode fiber (SMF) is spliced with a segment of hollow-core fiber (HCF) coated with polydimethylsiloxane (PDMS), some PDMS is injected into the HCF, forming a Vernier sensor with an air cavity adjacent to a PDMS cavity. It is shown that TL and temperature changes give rise to opposite and remarkable different variations in lengths of the two cavities, thereby enhancing Vernier effect and in favor of simultaneous measurements of TL and temperature. Moreover, the limited sensitivity magnification due to the length mismatch between the two cavities is compensated for by reconstructing the Vernier envelope with a broadened free spectrum range (FSR) from output signal. As a result, the highest TL sensitivity reported so far of -2637.47 nm/N and a good condition number of 69.056 for the sensitivity coefficient matrix have been achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.507756DOI Listing

Publication Analysis

Top Keywords

fiber sensor
8
enhanced vernier
8
simultaneous measurements
8
transverse load
8
load temperature
8
vernier
5
ultrasensitive fiber
4
sensor enhanced
4
vernier simultaneous
4
measurements transverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!