Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we fabricated and characterized various parallel flip-chip AlGaN-based deep-ultraviolet (DUV) micro-ring LEDs, including changes in ring dimensions as well as the p-GaN-removed region widths at the outer micro-ring, respectively (PRM LEDs). It is revealed that the LED chips with smaller mesa withstand higher current density and deliver considerably higher light output power density (LOPD), under the same proportion of the hole to the entire mesa column (before it is etched into ring) within the limits of dimensions. However, as the ring-shaped mesa decreases, the LOPD begins to decline because of etching damage. Subsequently, at the same external diameter, the optical performance of micro-ring LEDs with varied internal diameters is studied. Meanwhile, the influence of different structures on light extraction efficiency (LEE) is studied by employing a two-dimensional (2D)-finite-difference time-domain (FDTD) method. In addition, the expand of the p-GaN-removed region at the outer micro-ring as well as the corresponding effective light emission region have some influence to LOPD. The PRM-23 LED (with an external diameter of 90 µm, an internal diameter of 22 µm, and a p-GaN-removed region width of 8 µm) has an LOPD of 53.36 W/cm with a current density of 650 A/cm, and an external quantum efficiency (EQE) of 6.17% at 5 A/cm. These experimental observations provide a comprehensive understanding of the optical and electrical performance of DUV micro-LEDs for future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.507455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!