The reported autofocusing ability of a ring Airyprime beam array reaches up to 8632.40, while the strongest autofocusing ability of a circular Airyprime beam (CAPB) is only 1822.49. How can the autofocusing ability of a single beam reach the autofocusing ability of a beam array? To achieve this goal, a circularly transformed Airyprime beam (CTAPB) is introduced by following two steps. First, a circular equation transformation on the two transverse coordinates in the electric field expression of a propagating Airyprime beam is performed. Then, the electric field expression of a propagating Airyprime beam is integrated over the angle. The intensity profile of a CTAPB on the initial plane changes significantly with varying the primary ring radius r. With increasing r, therefore, the autofocusing ability of a CTAPB undergoes a process of first increasing and then decreasing, while the focal length always increases. A CTAPB exhibits more powerful autofocusing ability than a CAPB. The maximum autofocusing ability of a CTAPB can reach up to 8634.76, which is 4.74 times that of a CAPB, while the corresponding focal length is 95.11% of a CAPB. A CTAPB on the initial plane can be approximately characterized by a ring Airyprime beam array with sufficient number of Airyprime beams. Due to the better symmetry, a CTAPB has a slightly stronger autofocusing ability than a ring Airyprime beam array and almost the same focal length as a ring Airyprime beam array. The CTAPB is also experimentally generated, and the experimental results indicate that the CTAPB has powerful autofocusing ability. As a replacement of a CAPB and a ring Airyprime beam array, this introduced CTAPB can be applied to the scenes which involve abruptly autofocusing effect.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.516317DOI Listing

Publication Analysis

Top Keywords

airyprime beam
40
autofocusing ability
40
ring airyprime
20
beam array
20
beam
12
powerful autofocusing
12
focal length
12
airyprime
11
autofocusing
11
ability
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!