In this work, the concentration of rare-earth ions in doped silica whispering gallery lasers (WGLs) is controlled by evaporation. The fabrication of WGLs is used to experimentally evaluate the evaporation rate (mol/μm) and ratio (mol/mol) of erbium and silica lost from a doped fiber during heating. Fixed lengths of doped silica fiber are spliced to different lengths of undoped fiber and then evaporated by feeding into the focus of a CO laser. During evaporation, erbium ions are precipitated in the doped silica fiber to control the erbium concentration in the remaining SiO, which is melted into a microsphere. By increasing the length of the undoped section, a critical point is reached where effectively no ions remain in the glass microsphere. The critical point is found using the spectra of the whispering gallery modes in microspheres with equal sizes. From the critical point, it is estimated that, for a given CO laser power, 6.36 × 10 mol of Er is lost during the evaporation process for every cubic micron of silica fiber. This is equivalent to 1.74 × 10 mol of Er lost per mol of SiO evaporated. This result facilitates the control of the doping concentration in WGLs and provides insight into the kinetics of laser-induced evaporation of doped silica.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.509662DOI Listing

Publication Analysis

Top Keywords

silica fiber
16
doped silica
16
whispering gallery
12
critical point
12
mol lost
8
silica
7
evaporation
6
fiber
6
doped
5
evaporation characteristics
4

Similar Publications

Article Synopsis
  • To achieve carbon neutrality by 2050, capturing carbon dioxide from the atmosphere is essential, and direct air capture (DAC) using amine-based compounds is being researched for effectiveness.
  • Researchers developed thermosetting DAC nanofibers that show strong performance with low-temperature desorption and heat resistance by polymerizing amines with epoxy, using poly(vinyl alcohol) (PVA) for easier fabrication.
  • The resulting nanofiber webs demonstrated high CO adsorption capacity and efficient desorption, allowing for sustainable and low-energy recovery of CO while also maintaining stability over prolonged use.
View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence.

Adv Mater

December 2024

Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.

Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!