We propose a new holographic interferometric technique of phase interrogation for nanophotonic sensors, allowing to reach low phase noise and fluctuation by using a digital micromirror device spatial light modulator. With the spatial light modulator, both beam shaping and phase shifting interferometry can be simultaneously managed, hence enabling the interrogation of nanophotonic devices with a common-path heterodyne Young's interference experiment. The efficiency of the technique is illustrated in the particular case of temperature sensing using Tamm plasmon photonic crystals. The hologram sensor allows to probe resonant structures with deep attenuation at resonance, such as resonant structures at critical coupling or with phase singularities.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.507643DOI Listing

Publication Analysis

Top Keywords

phase interrogation
8
young's interference
8
digital micromirror
8
micromirror device
8
interrogation nanophotonic
8
spatial light
8
light modulator
8
resonant structures
8
phase
5
optical sensing
4

Similar Publications

In toto biological framework: Modeling interconnectedness during human development.

Dev Cell

January 2025

Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Electronic address:

Recent advancements in pluripotent stem cell and synthetic tissue technology have brought significant breakthroughs in studying early embryonic development, particularly within the first trimester of development in humans. However, during fetal stage development, investigating further biological events represents a major challenge, partly due to the evolving complexity and continued interaction across multiple organ systems. To bridge this gap, we propose an "in toto" biological framework that leverages a triad of technologies: synthetic tissues, intravital microscopy, and computer vision to capture in vivo cellular morphodynamics, conceptualized as single-cell choreography.

View Article and Find Full Text PDF

Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads.

View Article and Find Full Text PDF

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Identifying proteins from living organisms helps us understand the biological functions of cells, discover new molecular mechanisms, and interrogate known mechanisms for improving our understanding. For a comprehensive understanding of cellular functions, identifying the whole protein content, or proteome, of a cell is desirable but challenging. Here, we describe in detail two methods of proteome fractionation at either the protein (SDS-PAGE) or peptide (high-pH reversed-phase fractionation) level, which can be used to maximize the identification of proteins from complex biological samples.

View Article and Find Full Text PDF

CySP3-96 enables scalable, streamlined, and low-cost sample preparation for cysteine chemoproteomic applications.

Mol Cell Proteomics

December 2024

Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA. Electronic address:

Cysteine chemoproteomic screening platforms are widely utilized for chemical probe and drug discovery campaigns. Chemoproteomic compound screens, which use a mass spectrometry-based proteomic readout, can interrogate the structure activity relationship (SAR) for thousands of proteins in parallel across the proteome. The versatility of chemoproteomic screens has been demonstrated across electrophilic, nucleophilic, and reversible classes of molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!