Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer, degenerative disorders and organ ischaemia-reperfusion injury (IRI). Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298758PMC
http://dx.doi.org/10.1038/s41586-023-06983-9DOI Listing

Publication Analysis

Top Keywords

dictates ferroptosis
8
distal cholesterol
8
cholesterol biosynthesis
8
ferroptosis
6
7-dhc
6
7-dehydrocholesterol dictates
4
ferroptosis sensitivity
4
sensitivity ferroptosis
4
ferroptosis form
4
form regulated
4

Similar Publications

Recent studies demonstrate that lipid peroxidation-induced ferroptosis participates in 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-evoked neurotoxicity and cognitive dysfunction. Melatonin has been indicated to confer neuroprotection against brain diseases via its potent anti-ferroptotic effects. Therefore, this study aims to explore whether melatonin can mitigate BDE-47-elicited cognitive impairment via suppressing ferroptosis, and further delineate the underlying mechanisms.

View Article and Find Full Text PDF

PRDX6 dictates ferroptosis sensitivity by directing cellular selenium utilization.

Mol Cell

December 2024

Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Bavaria 85764, Germany. Electronic address:

Selenium-dependent glutathione peroxidase 4 (GPX4) is the guardian of ferroptosis, preventing unrestrained (phospho)lipid peroxidation by reducing phospholipid hydroperoxides (PLOOH). However, the contribution of other phospholipid peroxidases in ferroptosis protection remains unclear. We show that cells lacking GPX4 still exhibit substantial PLOOH-reducing capacity, suggesting a contribution of alternative PLOOH peroxidases.

View Article and Find Full Text PDF

Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of "biological logic-gates" to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe@HMON@DNA-Exo, is engineered via in situ Fe synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells.

View Article and Find Full Text PDF

Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation.

View Article and Find Full Text PDF

Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!