Nonmarine rocks in sea cliffs of southern California store a detailed record of weathering under tropical conditions millions of years ago, where today the climate is much drier and cooler. This work examines early Eocene (~ 50-55 million-year-old) deeply weathered paleosols (ancient, buried soils) exposed in marine terraces of northern San Diego County, California, and uses their geochemistry and mineralogy to reconstruct climate and weathering intensity during early Eocene greenhouse climates. These Eocene warm spikes have been modeled as prequels for ongoing anthropogenic global warming driven by a spike in atmospheric CO. Paleocene-Eocene thermal maximum (PETM, ~ 55 Ma) kaolinitic paleosols developed in volcaniclastic conglomerates are evidence of intense weathering (CIA > 98) under warm and wet conditions (mean annual temperature [MAT] of ~ 17 °C  ± 4.4 °C and mean annual precipitation [MAP] of ~ 1500 ± 299 mm). Geologically younger Early Eocene climatic optimum (EECO, 50 Ma) high shrink-swell (Vertisol) paleosols developed in coarse sandstones are also intensely weathered (CIA > 80) with MAT estimates of ~ 20 °C ± 4.4 °C but have lower estimated MAP (~ 1100 ± 299 mm), suggesting a less humid climate for the EECO greenhouse spike than for the earlier PETM greenhouse spike.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830502PMC
http://dx.doi.org/10.1038/s41598-024-53210-0DOI Listing

Publication Analysis

Top Keywords

early eocene
12
nonmarine rocks
8
san diego
8
paleosols developed
8
greenhouse spike
8
eocene
5
eocene 50-55 ma
4
greenhouse
4
50-55 ma greenhouse
4
climate
4

Similar Publications

Morphological study of the anterior dentition in Raoellidae (Mammalia, Artiodactyla), new insight on their dietary habits.

J Anat

January 2025

Institut des Sciences de l'Évolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France.

Raoellidae are small artiodactyls from the Indian subcontinent closely related to stem cetaceans. They bring crucial information to understand the early phase of the land-to-water transition in Cetacea. If they are considered to be partly aquatic, the question of their dietary habits remains partly understood due to their "transitional" morphology.

View Article and Find Full Text PDF

Shrews are among the most speciose of mammalian clades, but their evolutionary history is poorly understood. Their fossil record is fragmentary and even the anatomy of living groups is not well documented. Here, we incorporate the oldest, most complete fossil shrew yet known into the first phylogenetic analysis of the group to include molecular, morphological and temporal data.

View Article and Find Full Text PDF

Introduction Raoellidae are small artiodactyls retrieved from the middle Eocene of Asia (ca - 47 Ma) and closely related to stem Cetacea. Morphological observations of their endocranial structures allow for outlining some of the early steps of the evolutionary history of the cetacean brain. The external features of the brain and associated sinuses of Raoellidae are so far only documented by the virtual reconstruction of the endocast based on specimens of the species Indohyus indirae.

View Article and Find Full Text PDF
Article Synopsis
  • Pseudonotherobius kohlsi and Megalomus? coloradensis are newly identified species of lacewings from the early Eocene era, found in Colorado’s Green River Formation.
  • Pseudonotherobius is characterized by a specific crossvein in its forewings and a uniquely dilated hind wing, which sets it apart within its family.
  • The genus is tentatively placed within the Carobiinae subfamily, hinting at its similarity to a modern Australian lacewing species.
View Article and Find Full Text PDF
Article Synopsis
  • - A new beetle species, Rhantus villumi sp. nov., has been identified from a single specimen found in the Fur Formation of Denmark, dating back about 55.4 million years to the early Eocene, making it the oldest known member of its genus.
  • - The discovery aligns with phylogenetic studies and suggests that the presence of this temperate beetle in a typically warm environment indicates potential short-term cooling trends during that period.
  • - The newly identified species might have fed on mosquito larvae, which have also been found in the same fossil site; however, another Dytiscidae species was noted but remains unidentified due to preservation issues.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!