Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is highly transmissible and pathogenic. Patients with mild cases account for the majority of those infected with coronavirus disease 2019 (COVID-19). Although there is evidence that many patients with COVID-19 have varying degrees of attentional impairment, little is known about how SARS-COV-2 affects attentional function. This study included a high-risk healthcare population divided into groups of healthcare workers (HCWs) with mild COVID-19 (patient group, n = 45) and matched healthy HCWs controls (HC group, n = 42), who completed general neuropsychological background tests and Attention Network Test (ANT), and underwent resting-state functional magnetic resonance imaging (rs-fMRI) using amplitude of low-frequency fluctuation (ALFF) to assess altered brain activity; Selective impairment occurred in orienting and executive control networks, but not in alert network, in the patient group, and widespread cognitive impairment encompassing general attention, memory, and executive dysfunction. Moreover, the patient group had significantly lower ALFF values in the left superior and left middle frontal gyri than the HC group. SARS-COV-2 infection may have led to reduced brain activity in the left superior and left middle frontal gyri, thus impairing attentional orienting and executive control networks, which may explain the development of attentional deficits after COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222278PMC
http://dx.doi.org/10.1007/s11682-024-00851-4DOI Listing

Publication Analysis

Top Keywords

brain activity
12
patient group
12
attentional impairment
8
altered brain
8
healthcare workers
8
mild covid-19
8
orienting executive
8
executive control
8
control networks
8
left superior
8

Similar Publications

There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a pro-inflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor.

View Article and Find Full Text PDF

Systematic evaluation of adhesives for implant fixation in multimodal functional brain MRI.

MAGMA

January 2025

Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany.

Objective: Invasive multimodal fMRI in rodents is often compromised by susceptibility artifacts from adhesives used to secure cranial implants. We hypothesized that adhesive type, shape, and field strength significantly affect susceptibility artifacts, and systematically evaluated various adhesives.

Materials And Methods: Thirty-one adhesives were applied in constrained/unconstrained geometries and imaged with T2*-weighted EPI at 7.

View Article and Find Full Text PDF

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.

View Article and Find Full Text PDF

Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis.

View Article and Find Full Text PDF

Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!