A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Response to In-Hospital Pulmonary Rehabilitation in Individuals Recovering From Exacerbations of Chronic Obstructive Pulmonary Disease. | LitMetric

Background: Predicting the response to pulmonary rehabilitation (PR) could be valuable in defining admission priorities. We aimed to investigate whether the response of individuals recovering from a COPD exacerbation (ECOPD) could be forecasted using machine learning approaches.

Method: This multicenter, retrospective study recorded data on anthropometrics, demographics, physiological characteristics, post-PR changes in six-minute walking distance test (6MWT), Medical Research Council scale for dyspnea (MRC), Barthel Index dyspnea (BId), COPD assessment test (CAT) and proportion of participants reaching the minimal clinically important difference (MCID). The ability of multivariate approaches (linear regression, quantile regression, regression trees, and conditional inference trees) in predicting changes in each outcome measure has been assessed.

Results: Individuals with lower baseline 6MWT, as well as those with less severe airway obstruction or admitted from acute care hospitals, exhibited greater improvements in 6MWT, whereas older as well as more dyspnoeic individuals had a lower forecasted improvement. Individuals with more severe CAT and dyspnea, and lower 6MWT had a greater potential improvement in CAT. More dyspnoeic individuals were also more likely to show improvement in BId and MRC. The Mean Absolute Error estimates of change prediction were 44.70m, 3.22 points, 5.35 points, and 0.32 points for 6MWT, CAT, BId, and MRC respectively. Sensitivity and specificity in discriminating individuals reaching the MCID of outcomes ranged from 61.78% to 98.99% and from 14.00% to 71.20%, respectively.

Conclusion: While the assessed models were not entirely satisfactory, predictive equations derived from clinical practice data might help in forecasting the response to PR in individuals recovering from an ECOPD. Future larger studies will be essential to confirm the methodology, variables, and utility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arbres.2024.01.001DOI Listing

Publication Analysis

Top Keywords

individuals recovering
12
predicting response
8
pulmonary rehabilitation
8
individuals
8
response individuals
8
individuals lower
8
dyspnoeic individuals
8
bid mrc
8
6mwt
5
response in-hospital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!