Numerical simulation of flow behavior in basilar bifurcation computed tomography angiography.

Int J Numer Method Biomed Eng

Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan.

Published: April 2024

In this study, a moving boundary deformation model based on four-dimensional computed tomography angiography (4D-CTA) with high temporal resolution is constructed, and blood flow dynamics of cerebral aneurysms are investigated by numerical simulation. A realistic moving boundary deformation model of a cerebral aneurysm was constructed based on 4D-CTA in each phase. Four hemodynamic factors (wall shear stress [WSS], wall shear stress divergence [WSSD], oscillatory shear index [OSI], and residual residence time [RRT]) were obtained from numerical simulations, and these factors were evaluated in basilar artery aneurysms. Comparison of the rigid body condition and the moving boundary condition investigating the relationship between wall displacement and hemodynamic factors clarified that the spatial-averaged WSS and maximum WSSD considering only the aneurysmal dome has a large difference between conditions during the peak systole, and there were also significant differences in OSI and RRT.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3805DOI Listing

Publication Analysis

Top Keywords

moving boundary
12
numerical simulation
8
computed tomography
8
tomography angiography
8
boundary deformation
8
deformation model
8
hemodynamic factors
8
wall shear
8
shear stress
8
simulation flow
4

Similar Publications

To address the challenges of missed detections caused by insufficient shape and texture features and blurred boundaries in existing detection methods, this paper introduces a novel moving vehicle detection approach for satellite videos. The proposed method leverages frame difference and convolution to effectively integrate spatiotemporal information. First, a frame difference module (FDM) is designed, combining frame difference and convolution.

View Article and Find Full Text PDF

Integrated Management of Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Expanding Roles of SGLT2is, GLP-1RAs, and GIP/GLP-1RAs.

Biomedicines

January 2025

Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece.

Cardiovascular-Kidney-Metabolic syndrome, introduced by the American Heart Association in 2023, represents a complex and interconnected spectrum of diseases driven by shared pathophysiological mechanisms. However, this framework notably excludes the liver-an organ fundamental to metabolic regulation. Building on this concept, Cardiovascular-Renal-Hepatic-Metabolic (CRHM) syndrome incorporates the liver's pivotal role in this interconnected disease spectrum, particularly through its involvement via metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

At early stages of heart development, the first and second heart fields are a continuum of lateral head mesoderm-derived, cardiogenic cells.

Dev Biol

January 2025

Institute of Life Sciences and Health (ILSH), School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK. Electronic address:

Pioneering work in the chicken established that the initial development of the heart consists of two stages: the quick assembly of a beating heart, followed by the recruitment of cells from adjacent tissues to deliver the mature in-and outflow tract. Cells to build the primitive heart were dubbed the first heart field (FHF) cells, cells to be recruited later the second heart field (SHF) cells. The current view is that these cells represent distinct, maybe even pre-determined lineages.

View Article and Find Full Text PDF

Background: Double outlet right ventricle (DORV) is a challenging congenital cardiac lesion to surgically master. We utilize computed tomography-guided-three-dimensional (3D) modeling/printing and novel in-house software to delineate anatomical relationships providing operative insight into the surgical approach. Our intent is to highlight this and showcase our technology.

View Article and Find Full Text PDF

There are two separate conceptualizations for assessing existential risks: Planetary Boundaries (PBs) and global catastrophic risks (GCRs). While these concepts are similar in principle, their underpinning literatures tend not to engage with each other. Research related to these concepts has tended to be siloed in terms of the study of specific threats and also in terms of how these are assumed to materialize; PBs attribute global catastrophes to slow-moving and potentially irreversible global changes, while GCRs focuses on cataclysmic short-term events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!