A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-performance sulfonated polyether sulfone/chitosan membrane on creatinine transport improved by lithium chloride. | LitMetric

High-performance sulfonated polyether sulfone/chitosan membrane on creatinine transport improved by lithium chloride.

Int J Biol Macromol

Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, 50275 Semarang, Indonesia; Department of Chemistry, Pukyong National University, 608-737 Busan, Republic of Korea. Electronic address:

Published: March 2024

Membrane-based polyether sulfone (PES) is a potential candidate for hemodialysis because of its properties such as high mechanical strength, thermal stability, and chemical resistance. However, the nature of the hydrophobicity in the PES membrane inhibits their performance in transporting creatinine. In this study, polyethersulfone (PES) membranes were modified using a sulfonation process and the addition of chitosan (CS) and lithium chloride (LiCl) to improve its performance in transporting creatinine. The FTIR spectrum of the modified membrane shows peaks of the sulfonate (-SO), amine (NH), and hydroxyl (-OH) groups in absorption areas of 1065 cm, 1650 cm, and 3384 cm, respectively, indicating that the membrane SPES/CS-LiCl has been successfully prepared. The modified PES membranes shows a higher porosity, swelling, water absorption, and hydrophilicity than pure PES membrane. The modification of the PES membrane in this study also enhances the ability of the membrane to transport creatinine. In the pure PES membrane, the creatinine clearance is 0.30 mg/dL, while in the SPES/CS-LiCl (5:2) membrane the creatinine clearance is 0.42 mg/dL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129784DOI Listing

Publication Analysis

Top Keywords

pes membrane
16
membrane creatinine
12
membrane
9
lithium chloride
8
performance transporting
8
transporting creatinine
8
pes membranes
8
pure pes
8
creatinine clearance
8
pes
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!