Fabrication of biodegradable shape memory polymer with remotely controllable shape actuation is of great significance in the biomedical field but remains challenging. Herein, we present a simple strategy to fabricate a monolayer-based stretchable and mechanically robust polycaprolactone/polydopamine elastomer via efficient thiol-ene click chemistry. The resultant elastomers exhibit desirable photothermal transfer efficiency and can enable rapid temperature increase over the melting temperature of polymeric matrix, and quantitative results demonstrate that the crosslinked film exhibited excellent shape memory properties with shape fixity (R) and shape recovery ratios (R) approaching 92.3 % and 95.6 %, respectively. Combined with photo stimuli, anisotropic polymer chain relaxation of the prestretched film can generate asymmetric contractions and eventually give rise to ut out-of-plane bending actuations upon photo stimulation, meanwhile, numerical simulation reveals the interaction mechanism of light with film. Beyond this, we further demonstrate that the bending angle is correlated with the parameters of prestretch strain, film thickness as well as irradiation time, and the maximum value can reach 158° with prestretch strain of 200 % and film thickness of 0.3 mm. In particular, the bent structures could be reversibly deformed into plane state via photo-directed corresponding opposite surfaces. Remarkably, the in vitro degradation properties of the elastomers on PBS-T buffer solutions demonstrated that the degradation was composed of induction stage and acceleration stage. This work will pave way for designing biodegradable light-induced shape memory materials toward biomedical device fields and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129768 | DOI Listing |
Brain Struct Funct
December 2024
School of Medicine, Department of Neuropharmacology, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
This editorial celebrates the 80th birthday of Distinguished Professor Laszlo Zaborszky, co-founder of Brain Structure and Function, and reflects on his monumental contributions to neuroscience, particularly his pioneering work on the cholinergic basal forebrain. Professor Zaborszky's research has reshaped our understanding of this brain region's organization and function, uncovering its critical role in cognitive processes such as learning, memory, and attention. His findings have challenged longstanding assumptions, demonstrating that the cholinergic projections to the cortex are highly organized, with implications for neurodegenerative diseases like Alzheimer's.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada.
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality.
View Article and Find Full Text PDFGels
November 2024
Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea.
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!