A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Altered static and dynamic functional connectivity of the default mode network across epilepsy subtypes in children: A resting-state fMRI study. | LitMetric

Background: Epilepsy is a chronic neurologic disorder characterized by abnormal functioning of brain networks, making it a complex research topic. Recent advancements in neuroimaging technology offer an effective approach to unraveling the intricacies of the human brain. Within different types of epilepsy, there is growing recognition regarding ongoing changes in the default mode network (DMN). However, little is known about the shared and distinct alterations of static functional connectivity (sFC) and dynamic functional connectivity (dFC) in DMN among epileptic subtypes, especially in children with epilepsy.

Methods: Here, 110 children with epilepsy at a single center, including idiopathic generalized epilepsy (IGE), frontal lobe epilepsy (FLE), temporal lobe epilepsy (TLE), and parietal lobe epilepsy (PLE), as well as 84 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scan. We investigated both sFC and dFC between groups of the DMN.

Results: Decreased static and dynamic connectivity within the DMN subsystem were shared by all subtypes. In each epilepsy subtype, children with epilepsy displayed significant and distinct patterns of DMN connectivity compared to the control group: the IGE group showed reduced interhemispheric connectivity, the FLE group consistently demonstrated disturbances in frontal region connectivity, the TLE group exhibited significant disruptions in hippocampal connectivity, and the PLE group displayed a notable decrease in parietal-temporal connectivity within the DMN. Some state-specific FC disruptions (decreased dFC) were observed in each epilepsy subtype that cannot detect by sFC. To determine their uniqueness within specific subtypes, bootstrapping methods were employed and found the significant results (IGE: between PCC and bilateral precuneus, FLE: between right middle frontal gyrus and bilateral middle temporal gyrus, TLE: between left Hippocampus and right fusiform, PLE: between left angular and cingulate cortex). Furthermore, only children with IGE exhibited dynamic features associated with clinical variables.

Conclusions: Our findings highlight both shared and distinct FC alterations within the DMN in children with different types of epilepsy. Furthermore, our work provides a novel perspective on the functional alterations in the DMN of pediatric patients, suggesting that combined sFC and dFC analysis can provide valuable insights for deepening our understanding of the neuronal mechanism underlying epilepsy in children.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2024.106425DOI Listing

Publication Analysis

Top Keywords

epilepsy
13
functional connectivity
12
lobe epilepsy
12
connectivity
9
static dynamic
8
dynamic functional
8
default mode
8
mode network
8
subtypes children
8
types epilepsy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!