Sources and environmental impacts of volatile organic components in a street canyon: Implication for vehicle emission.

Sci Total Environ

Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Published: March 2024

Street canyons serve as a representative environment that directly reflects the impact of vehicular emissions. Volatile organic compounds (VOCs) sampling during an O pollution event and a PM pollution episode was conducted at an urban site and a street canyon in Zhengzhou, China. It has been determined that street canyons suffer from more severe particle and NO pollution than the urban site. Additionally, O has been identified as a significant or emerging pollutant in street canyon environments. In terms of VOCs, the street canyon exhibits 1.4 and 1.1 times higher total VOC concentrations compared to the urban site during the O and PM pollution episodes, respectively. In the street canyon location, there was a slight increase in the proportion of alkanes and aromatics, while the proportions of oxygenated VOCs and halogenated hydrocarbons decreased. Source apportionment analysis reveals that street canyons were more susceptible to the accumulation of VOCs from coating solvent, liquid petroleum gas (LPG), and gasoline additives. Consequently, the environmental impacts of VOCs originating from coating solvent and LPG were more pronounced in the street canyon location compared to the urban site. The trends of NO concentration indicate that future continuously stricter vehicle emission standards and control policies can further reduce vehicle exhaust emissions and more attention needs to be focused on the reduction of non-exhaust emissions (i.e., coating solvent) and LPG vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170569DOI Listing

Publication Analysis

Top Keywords

street canyon
24
urban site
16
street canyons
12
coating solvent
12
street
9
environmental impacts
8
volatile organic
8
vehicle emission
8
compared urban
8
canyon location
8

Similar Publications

Air-source heat pumps are popular in buildings to provide cooling and heating. However, how the air discharged by air-source heat pump outdoor units affects the dispersion of air pollutants in urban street canyons remains poorly understood. This study used coupled simulations to examine the effects that air-source heat pump outdoor units had on vehicle-induced indoor and outdoor air pollution in an urban street canyon and how these effects varied based on the arrangement of outdoor units or the presence of building envelope components (e.

View Article and Find Full Text PDF

Context: Trees play a vital role in reducing street-level particulate matter (PM) pollution in metropolitan areas. However, the optimal tree growth type for maximizing the retention of various sizes of PM remains uncertain.

Objectives: This study assessed the PM reduction capabilities of evergreen and deciduous broadleaf street trees, focusing on how leaf phenology influences the dispersion of pollutants across particle sizes.

View Article and Find Full Text PDF

Gaps between buildings facing the streets can effectively accelerate the natural removal of pollutants in street canyons by enhancing ventilation and diffusion processes. This removal process is closely related to gap permeability (P, ratio of gap width to street length) and building density (λ) surrounding the streets. However, the integrated effects of these two parameters on pollutant dispersion remain unclear, because of the limited computational resources and the difficulty of traditional modeling methods to discrete the numerous buildings.

View Article and Find Full Text PDF
Article Synopsis
  • Brown carbon (BrC) is a type of organic aerosol that absorbs light in the UV-Vis spectrum, influencing climate, but its full effects are not well understood due to limited knowledge on its chemistry and atmospheric behavior over time.
  • This study focused on measuring BrC in particulate matter from winter emissions in Helsinki, specifically in areas influenced by wood combustion, using advanced techniques to analyze its sources, chemical composition, and the extent of light absorption.
  • Findings indicated that BrC significantly contributed to light absorption, especially in residential areas, with biomass burning being the primary source, while the research also highlighted variances in absorption characteristics and the uncertainties related to measuring these properties.
View Article and Find Full Text PDF

Modeling traffic pollutants in a street canyon by CFD: Idealized line sources versus multiple realistic car sources.

Sci Total Environ

December 2024

Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, United Kingdom; Building Physics and Sustainable Design, Department of Civil Engineering, KU Leuven, Leuven, Belgium. Electronic address:

Idealized sources are commonly used to reproduce the traffic emission in street canyons in experimental and numerical investigations. However, it remains unclear whether idealized sources can accurately reproduce the pollutant dispersion compared to more realistic sources. The goal of this paper is to investigate the impact of idealized and realistic sources on traffic-induced pollutant concentration in a street canyon by numerical simulation with Computational Fluid Dynamics (CFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!