Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2024.01.060 | DOI Listing |
J Agric Food Chem
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication.
View Article and Find Full Text PDFPhytomedicine
February 2025
General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China. Electronic address:
Background: Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed.
Purpose: The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis.
Food Funct
January 2025
Department of Heart Center, The Third Central Hospital of, Tianjin, 300170, China.
Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted -derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Department of Medicine and Surgery, LUM University, Casamassima, Italy. Electronic address:
Exosome-like nanovesicles (ELNs) of food origin have received great attention in the last decade, due to the hypothesis that they contain bioactive molecules. ELNs purified from edible species have been shown to be protective and are able to regulate intestinal homeostasis. Despite ELNs being potential rising stars in modern healthy diets and biomedical applications, further research is needed to address underlying knowledge gaps, especially related to the specific molecular mechanism through which they exert their action.
View Article and Find Full Text PDFDrug Deliv
December 2025
Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
Extracellular vesicles (EVs) are an experimental class of drug carriers. Alternative sources of EVs are currently being explored to overcome limitations related to their manufacturing from mesenchymal stem cells. In this work, derived EVs were tested as carriers for the widely used chemotherapeutic drug - doxorubicin (DOX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!