Due to microplastics (MPs) being widely distributed in soil, the use of advanced oxidation to remediate organic-contaminated soils may accelerate the aging of MPs in soil and impact the release of di-(2-ethylhexyl) phthalate (DEHP), a potential carcinogen used as a plasticizer in plastics, from MPs. In this study, persulfate oxidation (PO) and temperature treatment (TT) were used to treat biodegradable and petroleum-based MPs, including polylactic acid (PLA), polyvinyl chloride (PVC), and polystyrene (PS). The methods used for evaluating the characteristics changes of MP were X-ray diffraction (XRD) analysis and water contact angle measurement. The effects of aging on DEHP release from MPs were investigated via soil incubation. The results showed PO and TT led to increased surface roughness, oxygen-containing functional group content, and hydrophilicity of the MPs with prolonged aging, consequently accelerating the release of DEHP from the MPs. Interestingly, PLA aged faster than PVC and PS under similar conditions. After 30 days of PO treatment, DEHP release from PLA into the soil increased 0.789-fold, exceeding the increase from PVC (0.454-fold) and PS (0.287-fold). This suggests that aged PLA poses a higher ecological risk than aged PVC or PS. Furthermore, PO treatment resulted in the oxidation and degradation of DEHP on the MP surface. After 30 days of PO treatment, the DEHP content in PLA, PVC, and PS decreased by 19.1%, 25.8%, and 23.5%, respectively. Specifying the types of MPs studied and the environmental conditions would provide a more precise context for the results. These findings provide novel insights into the fate of biodegradable and petroleum-based MPs and the potential ecotoxicity arising from advanced oxidation remediation in contaminated soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116006 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable.
View Article and Find Full Text PDFiScience
December 2024
State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
ACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.
Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!