Mechanistic investigation and dual-mode colorimetric-chemiluminescent detection of glyphosate based on the specific inhibition of FeO@Cu nanozyme peroxidase-like activity.

Food Chem

School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, China. Electronic address:

Published: June 2024

AI Article Synopsis

  • A dual-mode nanosensor was developed to detect glyphosate by measuring changes in color and chemiluminescence (CL) caused by glyphosate's inhibition of peroxidase-like activity in synthesized FeO@Cu.
  • The presence of glyphosate reduces the sensor's signal strength by chelating with Fe(III)/Cu(II) and competing with TMB for hydroxyl radicals, both of which are essential for oxidation processes.
  • This innovative nanosensor demonstrated impressive sensitivity with detection limits of 0.086 µg/mL and 0.019 µg/mL, making it promising for on-site monitoring of glyphosate levels.

Article Abstract

In this study, a dual-mode colorimetric/CL nanosensor was developed for glyphosate detection based on the specific inhibition of FeO@Cu peroxidase-like activity. Synthesized FeO@Cu exhibited high levels of peroxidase-like activity that triggered the oxidation of luminol/3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB) to excited-state 3-aminophthalic acid/blue oxTMB, thereby delivering a CL signal/visible colorimetric signal, however, the presence of glyphosate inhibited this activity, resulting in a decrease in signal strength. In-depth investigation revealed that this inhibitory mechanism occurs via two pathways: one in which glyphosate chelates with Fe(III)/Cu(II) and occupy the catalytical active sites of FeO@Cu, thereby decreasing the generation of OH, and another in which glyphosate competes with TMB to consume generated OH, thus reducing the oxidation of TMB. This mechanism formed the basis of our novel dual-mode colorimetric/CL glyphosate nanosensor, which achieved limits of detection (LODs) of 0.086 µg/mL and 0.019 µg/mL in tests, thus demonstrating its significant potential for on-site glyphosate monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138501DOI Listing

Publication Analysis

Top Keywords

peroxidase-like activity
12
based specific
8
specific inhibition
8
inhibition feo@cu
8
dual-mode colorimetric/cl
8
glyphosate
7
mechanistic investigation
4
investigation dual-mode
4
dual-mode colorimetric-chemiluminescent
4
colorimetric-chemiluminescent detection
4

Similar Publications

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Iron/phosphorus co-doped carbon nanozyme for colorimetric sensing of organophosphorus pesticides in food.

Anal Methods

January 2025

Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 400054, P. R. China.

In this work, a peroxidase-like (POD-like) nanozyme of Fe/P-NC was synthesized by doping phosphorus (P) and nitrogen (N) to manipulate iron (Fe) activity centers, which showed catalytic activity and kinetics comparable to those of natural HRP. Based on the efficient POD-like activity of the Fe/P-NC nanozyme and cascaded catalytic reactions with acetylcholinesterase (AChE), we constructed a colorimetric, affordable and sensitive sensing platform to detect organophosphorus pesticides (OPs). In the presence of AChE, the POD-like activity of the prepared Fe/P-NC was suppressed, which weakened the Fe/P-NC-catalyzed oxidation of TMB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!