Fabrication of Au nanoclusters confined on hydroxy double salt-based intelligent biosensor for on-site monitoring of urease and its inhibitors.

Talanta

College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China; Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China. Electronic address:

Published: May 2024

AI Article Synopsis

  • * The researchers developed a pH-sensitive sensing platform using AuNCs@HDS, which can detect urease levels with a linear response range of 0.5-22.5 U/L and a low limit of detection of 0.19 U/L.
  • * They also designed a portable hydrogel kit that integrates with smartphones for easy, cost-effective, and on-site urease monitoring without the need for complex instruments.

Article Abstract

Sensitive and convenient sensing of urease and its inhibitors is exceptionally urgent in clinical diagnosis and new drug development. In this study, the gold nanoclusters (AuNCs) and hydroxyl double salt (HDS) were composited by a simple confinement effect to prepare highly fluorescent AuNCs@HDS composites to monitor urease and its drug inhibitors. HDS was used as a matrix to confine AuNCs (AuNCs@HDS), facilitating the emission intensity of AuNCs. However, acidic conditions (low pH) can disrupt the structure of HDS to break the confinement effect, and quench the fluorescence of AuNCs. Therefore, a sensing platform for pH-related enzyme urease detection was constructed based on the sensitive response of AuNCs@HDS to pH. This sensing platform had a linear response range of 0.5-22.5 U/L and a low limit of detection (LOD) of 0.19 U/L for urease. Moreover, this sensing platform was also applied to monitor urease inhibitors and urease in human saliva samples. Additionally, a portable hydrogel kit combined with a smartphone was developed for urease detection to achieve portable, low-cost, instrument-free, and on-site monitoring of urease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.125725DOI Listing

Publication Analysis

Top Keywords

urease inhibitors
12
sensing platform
12
urease
9
on-site monitoring
8
monitoring urease
8
monitor urease
8
urease detection
8
fabrication nanoclusters
4
nanoclusters confined
4
confined hydroxy
4

Similar Publications

In this study, the structure of a new boron compound obtained using 3-methoxy catechol and 4-methoxy phenyl boronic acid was characterized by H, C NMR, LC-MS-IT-TOF, UV-Vis and FTIR spectroscopy. The antioxidant activities of the newly synthesized compound were evaluated by DPPH free radical scavenging, ABTS quation radical scavenging and CUPRAC copper reducing capacity methods. Anticholinesterase activities were determined by acetylcholinesterase and butyrylcholinesterase enzyme inhibitor assays.

View Article and Find Full Text PDF

A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury.

ACS Chem Biol

January 2025

Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.

Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.

View Article and Find Full Text PDF

Background: A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of (). While substantial research supports the efficacy and safety of vonoprazan and amoxicillin (VA) dual therapy in the general population, there is still a lack of studies specifically focusing on its safety in elderly patients.

Aim: To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for in elderly patients.

View Article and Find Full Text PDF

Design, synthesis, in vitro, and in silico studies of 4-fluorocinnamaldehyde based thiosemicarbazones as urease inhibitors.

Sci Rep

January 2025

Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.

Clinically significant problems such as kidney stones and stomach ulcers are linked to the activation of the urease enzyme. At low pH, this enzyme gives an ideal environment to Helicobacter pylori in the stomach which is the cause of gastric ulcers and peptic ulcers. In recent work, we have developed a library of 4-fluorocinnamaldehyde base thiosemicarbazones and assessed them for their potential against urease enzyme.

View Article and Find Full Text PDF

This study represents the first investigation into the ultrasonic and microwave extraction of bioactive metabolites from (red seaweed) and () (brown seaweed), with a focus on their biological activities. The research compares ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE) utilizing a hydromethanolic solvent to evaluate their effects on these seaweeds' bioactive compounds and biological activities. The assessment included a series of antioxidant essays: DPPH, ABTS, phenanthroline, and total antioxidant capacity, followed by enzyme inhibition activities: alpha-amylase and urease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!