Correction for 'High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode' by Tian Sun , , 2023, , 7803-7811, https://doi.org/10.1039/D3NR00410D.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr90024cDOI Listing

Publication Analysis

Top Keywords

p-i-n perovskite
8
perovskite photodetectors
8
photodetectors image
8
image sensors
8
sensors long-term
8
long-term operational
8
operational stability
8
stability enabled
8
enabled corrosion-resistant
8
corrosion-resistant titanium
8

Similar Publications

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Wafer-scale monolayer MoS film integration for stable, efficient perovskite solar cells.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF

Multicolored Bifacial Perovskite Solar Cells through Top Electrode Engineering.

ACS Appl Mater Interfaces

January 2025

Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315000, China.

Power generation and architectural beauty are equally important for designing efficient and esthetically appealing bifacial perovskite solar cells (PSCs). In this work, efficient and multicolored p-i-n-structured PSCs are achieved by taking advantage of a dielectric/metal/dielectric (DMD)-type (MoO/Ni/Ag/MoO) transparent counter electrode. The MoO/Ni underlayer effectively promotes the formation of a continuous and conductive ultrathin Ag transparent film, especially the 1 nm Ni seed layer adjusts the interface energy level between perovskite/MoO and Ag, resulting in Ohmic contact of the electrode to promote charge extraction and collection.

View Article and Find Full Text PDF

Oriented wide-bandgap perovskites for monolithic silicon-based tandems with over 1000 hours operational stability.

Nat Commun

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

The instability of hybrid wide-bandgap (WBG) perovskite materials (with bandgap larger than 1.68 eV) still stands out as a major constraint for the commercialization of perovskite/silicon tandem photovoltaics, yet its correlation with the facet properties of WBG perovskites has not been revealed. Herein, we combine experiments and theoretical calculations to comprehensively understand the facet-dependent instability of WBG perovskites.

View Article and Find Full Text PDF

Light People: Prof. Henry Snaith's (FRS) perovskite optoelectronics journey.

Light Sci Appl

January 2025

Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.

In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!