Adhesives have received extensive attention in flexible bioelectronics, wearable electronic medical devices, and biofuel cells. However, it is a challenge to achieve late regulation of performance once polymer-based gels are formed. Here, a double-network organogel composed of a hydrophilic and hydrophobic polymer network and a polyamide acid network was successfully prepared. In diverse liquid environments (including isopropyl alcohol, glycerol, epichlorohydrin, -propanol, dichloromethane, triethanolamine, ethanol absolute, hydrogen peroxide, and ethyl acetate), the organogel adhesive demonstrated remarkable properties. It exhibits a strong tensile strength of 200 kPa, a high fracture strain reaching 560%, and an impressive adhesion strength of 38 kPa. In addition, the organogel demonstrates exceptional adhesive properties toward polytetrafluoroethylene, plastics, metals, rubber, and glass. Note that the organogel could also regulate adhesive and tough performance by thermally triggering a cyclization reaction even after the organogel has been formed. The strategy provides a new idea for designing soft materials with post-tunability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c18076 | DOI Listing |
Molecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFLangmuir
January 2025
Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.
3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.
View Article and Find Full Text PDFInt J Pharm
December 2024
Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA. Electronic address:
Conventional drug formulations release active pharmaceutical ingredients (APIs) immediately after administration, while long-acting (LA) drug products are designed for prolonged therapeutic effects, thereby reducing administration frequency and improving patient compliance. The development of LA therapeutics for chronic disease treatment has significantly helped patients adhere to their regimens, reducing the need for daily doses and easing the burden on healthcare systems. Advances in treatment have transformed Human Immunodeficiency Virus (HIV) into a manageable chronic disease, and efforts are underway to eliminate HIV in the future.
View Article and Find Full Text PDFGels
December 2024
College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea.
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.
View Article and Find Full Text PDFCarbohydr Res
December 2024
Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India. Electronic address:
In this report, the design and synthesis of cholesterol-based sugar azobenzene derivatives as photo-responsive organogelators have been carried out. The gel formation in different solvents was examined, and a minimum CGC of 0.5 % (w/v) was attained in toluene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!