In general, hydrostatic pressure can suppress ferroelectric polarization and further reduce Rashba spin-splitting, considering the spin-orbit coupling effect. Here, we present the design of ferroelectric double perovskite CsSnSiI, which exhibits the anomalous enhancement of Rashba spin-splitting parameters by pressure-induced ferroelectric topological order. The Rashba effect is nonlinear with the decrease in polarization under pressure and reaches a maximum at the pressure-induced Weyl semimetal (WSM) state between the transition from a normal insulator (NI) to a topological insulator (TI). Furthermore, we discover that controlling ferroelectric polarization with an electric field can also induce the topological transition with a large Rashba spin-splitting but under a lower critical pressure. These discoveries show a tunable gaint Rashba effect and pressure-induced topological phase transition for CsSnSiI, which can promote future research on the interaction between the Rashba effect and topological order, and its application to new electronic and spintronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c03432 | DOI Listing |
ACS Nano
December 2024
Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore.
A Rashba spin-splitting state with spin-momentum locking enables the charge-spin interconversion known as the Rashba effect, induced by the interplay of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC). Enhancing spin-splitting strength is promising to achieve high spin-orbit torque (SOT) efficiency for low-power-consumption spintronic devices. However, the energy scale of natural ISB at the interface is relatively small, leading to the weak Rashba effect.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.
Semiconductors with large energetic separation Δ of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (Δ > 400 meV) and spin textures with extremely short spin helix lengths ( ∼ 5 nm).
View Article and Find Full Text PDFACS Nano
December 2024
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron-phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Chiral organic-inorganic hybrid perovskites offer a promising platform for developing non-linear chiro-optical applications and chiral-induced spin selectivity. Here, we show that achiral hybrid perovskites that have highly ordered ferroelectric domains with orthogonal polarization exhibit planar chirality, as manifested by second harmonic generation with strong circular dichroism. Interestingly, the handedness of the second harmonic generation circular dichroism response can be alternatingly switched between orthogonally polarized domains and domain walls.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Sciences, Indian Institute of Information Technology Design and Manufacturing, Kurnool, India.
Motivated by the exceptional optoelectronic properties of 2D Janus layers (JLs), we explore the properties of group Va antimony-based JLs SbXY (X = Se/Te and Y = I/Br). Using Bader charges, the electric dipole moment in the out-of-plane direction of all the JLs is studied and the largest dipole moment is found to be in the SbSeI JL. Our results on the formation energy, phonon spectra, elastic constants, and molecular dynamics (AIMD) simulation provide insights into the energetic, vibrational, mechanical, and thermal stability of JLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!