AI Article Synopsis

  • Oxygen evolution reaction (OER) is a key challenge in water splitting for hydrogen production, with dual-site catalysts (DSCs) showing greater potential than single-site catalysts due to beneficial interactions between two metals.
  • Researchers created two configurations of iron-cobalt dual-sites: stereo-Fe-Co and planar-Fe-Co, finding that the planar configuration outperformed the stereo version in OER efficiency.
  • The study utilized various experimental techniques to show that the planar-Fe-Co DSC promotes an effective coupling of *O intermediates to form *O-O*, enhancing catalytic performance by addressing the limitations of the four-electron transfer process typical in OER.

Article Abstract

Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861885PMC
http://dx.doi.org/10.1073/pnas.2317247121DOI Listing

Publication Analysis

Top Keywords

spatial configuration
8
fe-co dual-sites
8
oxygen evolution
8
evolution reaction
8
fe-co sites
8
stereo-fe-co dsc
8
planar-fe-co dsc
8
fe-co
5
oer
5
configuration fe-co
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!