An always-on electrocardiogram (ECG) anomaly detector (EAD) with ultra-low power (ULP) consumption is proposed for continuous cardiac monitoring applications. The detector is featured with a 1.5-bit non-feedback delta quantizer (DQ) based feature extractor, followed by a multiplier-less convolutional neural network (CNN) engine, which eliminates the traditional high-resolution analog-to-digital converter (ADC) in conventional signal processing systems. The DQ uses a computing-in-capacitor (CIC) subtractor to quantize the sample-to-sample difference of ECG signal into 1.5-bit ternary codes, which is insensitive to low-frequency baseline wandering. The subsequent event-driven classifier is composed of a low-complexity coarse detector and a systolic-array-based CNN engine for ECG anomaly detection. The DQ and the digital CNN are fabricated in 65-nm and 180-nm CMOS technology, respectively, and the two chips are integrated on board through wire bonding. The measured detection accuracy is 90.6% ∼ 91.3% when tested on the MIT-BIH arrhythmia database, identifying three different ECG anomalies. Operating at 1 V and 1.4 V power supplies for the DQ and the digital CNN, respectively, the measured long-term average power consumption of the core circuits is 36 nW, which makes the detector among those state-of-the-art always-on cardiac anomaly detection devices with the lowest power consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2024.3360886DOI Listing

Publication Analysis

Top Keywords

anomaly detector
8
15-bit non-feedback
8
non-feedback delta
8
delta quantizer
8
always-on cardiac
8
cardiac monitoring
8
ecg anomaly
8
cnn engine
8
anomaly detection
8
digital cnn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!