A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916869PMC
http://dx.doi.org/10.1091/mbc.E23-06-0257DOI Listing

Publication Analysis

Top Keywords

p24-family members
24
atz
10
p24-family
9
copii subunit
8
subunit sec24c
8
facilitate clearance
8
endoplasmic reticulum
8
clearance atz
8
tmp21 tmed9
8
atz levels
8

Similar Publications

The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET).

View Article and Find Full Text PDF

Atp24δ8, a p24 family member, regulates the unfolded protein response and ER stress tolerance in Arabidopsis.

Int J Biol Macromol

March 2025

Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China. Electronic address:

ER stress activates the unfolded protein response (UPR), a critical mechanism for maintaining cellular homeostasis in plants. The p24 protein family is known to be involved in protein trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus, but its role in ER stress remains unclear in plants. In this study, we found that Atp24δ8(delta8), a member of the δ-2 subclass of the p24 family, is significantly upregulated in response to tunicamycin-induced ER stress.

View Article and Find Full Text PDF

TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction.

J Immunother Cancer

November 2024

Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands

Article Synopsis
  • The study explores how the PD-1 immune checkpoint protein is regulated on CD8 T cells, aiming to find ways to lower its abundance without hindering T cell activation, which is crucial for effective cancer therapy.
  • Researchers conducted a CRISPR-Cas9 screen on murine CD8 T cells to identify genes impacting PD-1 levels, discovering that inhibiting the TMED protein family, especially TMED10, could reduce PD-1 on the cell surface and enhance T cell function.
  • The findings highlight a new regulatory mechanism for PD-1 and suggest that targeting TMED could be a promising therapeutic strategy to improve T cell responses in cancer treatment, as indicated by correlations in mouse models and patient survival data.
View Article and Find Full Text PDF

The eukaryotic p24 family, consisting of α-, β-, γ- and δ-p24 subfamilies, has long been known to be involved in regulating secretion. Despite increasing interest in these proteins, fundamental questions remain about their role. Here, we systematically investigated Drosophila p24 proteins.

View Article and Find Full Text PDF

A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!