Purpose: Axonal optic nerve (ON) damage in glaucoma is characteristically associated with increased amounts of active transforming growth factor-beta 2 (TGF-β2) in the ON head. Here we investigated the functional role of scleral TGF-β signaling in glaucoma.

Methods: A deficiency of Tgfbr2, which encodes for TGF-β receptor type II (TGF-βRII), the essential receptor for canonical TGF-β signaling, was induced in fibroblasts (including those of the sclera) of mutant mice. To this end, 5-week-old mice were treated with tamoxifen eye drops. Experimental glaucoma was induced in 8-week-old mice using a magnetic microbead (MB) model. After 6 weeks of high intraocular pressure (IOP), the ON axons and their somata in the retina were labeled by paraphenylenediamine (PPD) and RNA-binding protein with multiple splicing (RBPMS) immunohistochemistry, respectively, and quantified.

Results: Tamoxifen treatment resulted in a significant decrease of TGF-βRII and its mRNA in the sclera. After 6 weeks of high IOP, reduced numbers of PPD-stained ON axons were seen in MB-injected eyes in comparison with not-injected contralateral eyes. Moreover, MB injection also led to a decrease of retinal ganglion cell (RGC) somata as seen in RBPMS-stained retinal wholemounts. Axon loss and RGC loss were significantly higher in mice with a fibroblast specific deficiency of TGF-βRII in comparison with control animals.

Conclusions: We conclude that the ablation of scleral TGF-β signaling increases the susceptibility to IOP-induced ON damage. Scleral TGF-β signaling in mutant mice appears to be beneficial for ON axon survival in experimentally induced glaucoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839816PMC
http://dx.doi.org/10.1167/iovs.65.1.48DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
20
scleral tgf-β
16
mutant mice
12
signaling mutant
8
increases susceptibility
8
susceptibility iop-induced
8
optic nerve
8
nerve damage
8
weeks high
8
tgf-β
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!