Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2023.2301432 | DOI Listing |
Environ Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.
View Article and Find Full Text PDFMicroorganisms
January 2025
Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy.
() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Fisheries, Southwest University, Chongqing 400715, China.
Largemouth bass (LMB, ), a commercially important farmed fish, is vulnerable to heat stress. Breeding heat-resistant LMB is highly desirable in the face of global warming. However, we still lack an efficient method to assess the heat resistance of LMB.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
Global warming poses a significant threat to aquaculture, particularly for cold-water species like rainbow trout (). Understanding the molecular mechanisms underlying stress responses is crucial for developing resilient strains. This study investigates the dual stress of salinity and temperature response of "Shuike No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!