Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30-45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into "transmembrane transport", "tRNA binding", "hydrogen sulfide biosynthetic process" and "sulfate assimilation" terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03792-6DOI Listing

Publication Analysis

Top Keywords

transcriptome response
8
response enterobacter
8
enterobacter s-33
8
varying temperature
8
differentially expressed
8
quorum sensing
8
genes
6
enterobacter
5
temperature
5
unravelling transcriptome
4

Similar Publications

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

(OBVs) represent a diverse group of RNA viruses, encompassing a progressively increasing number of arboviruses that cause disease in both humans and livestock. Yet, studies investigating these viruses remain scarce despite the critical importance of such knowledge for assessing their zoonotic potential. In this study, we conducted an evaluation of the early immune response against the understudied Batai virus (BATV), as well as the influence of reassortment with the Bunyamwera virus (BUNV) on this response.

View Article and Find Full Text PDF

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!