The ion-conducting IKs channel complex, important in cardiac repolarization and arrhythmias, comprises tetramers of KCNQ1 α-subunits along with 1-4 KCNE1 accessory subunits and calmodulin regulatory molecules. The E160R mutation in individual KCNQ1 subunits was used to prevent activation of voltage sensors and allow direct determination of transition rate data from complexes opening with a fixed number of 1, 2, or 4 activatable voltage sensors. Markov models were used to test the suitability of sequential versus allosteric models of IKs activation by comparing simulations with experimental steady-state and transient activation kinetics, voltage-sensor fluorescence from channels with two or four activatable domains, and limiting slope currents at negative potentials. Sequential Hodgkin-Huxley-type models approximately describe IKs currents but cannot explain an activation delay in channels with only one activatable subunit or the hyperpolarizing shift in the conductance-voltage relationship with more activatable voltage sensors. Incorporating two voltage sensor activation steps in sequential models and a concerted step in opening via rates derived from fluorescence measurements improves models but does not resolve fundamental differences with experimental data. Limiting slope current data that show the opening of channels at negative potentials and very low open probability are better simulated using allosteric models of activation with one transition per voltage sensor, which implies that movement of all four sensors is not required for IKs conductance. Tiered allosteric models with two activating transitions per voltage sensor can fully account for IKs current and fluorescence activation kinetics in constructs with different numbers of activatable voltage sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829594PMC
http://dx.doi.org/10.1085/jgp.202313465DOI Listing

Publication Analysis

Top Keywords

voltage sensors
20
activatable voltage
12
allosteric models
12
voltage sensor
12
activation
8
models
8
models iks
8
voltage
8
activation kinetics
8
channels activatable
8

Similar Publications

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).

View Article and Find Full Text PDF

In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics.

View Article and Find Full Text PDF

LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.

View Article and Find Full Text PDF

The development and calibration of a measurement system designed for assessing the performance of the avalanche photodiodes (APDs) used in the Compton scattering polarimeter of the CUSP project is discussed in this work. The designed system is able to characterize the APD gain GAPD and energy resolution across a wide range of temperatures (from -20 °C to +60 °C) and bias voltages Vbias (from 260 V to 410 V). The primary goal was to experimentally determine the GAPD dependence on the and Vbias in order to establish a strategy for stabilizing GAPD by compensating for fluctuations, acting on Vbias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!