In this work, a spatiotemporal metasurface is proposed to manipulate the path of photons flexibly. The spatial modulation is induced by the rectangle silicon units aligned on silica in a manner with a phase gradient only for -polarized photons, and the temporal modulation is contributed by the pumps of constructing Kerr dynamic gratings. By quantizing designed metasurfaces, the analytical solutions of output photon states can be derived correspondingly. Reversal design could be implemented by tailoring the profile of higher harmonics to infer the intensity of pumps, size of meta-atoms, and initial state. The path-polarization entanglement and correlations of output photons are realized, and then a CNOT gate is obtained by utilizing the deflection of the photon path. This work provides a scheme to deal with the spatiotemporal metasurfaces and expands the applications of metasurfaces in the quantum realm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.507878DOI Listing

Publication Analysis

Top Keywords

manipulation path
4
path state
4
state based
4
based spatiotemporal
4
spatiotemporal dielectric
4
dielectric metasurface
4
metasurface work
4
work spatiotemporal
4
spatiotemporal metasurface
4
metasurface proposed
4

Similar Publications

Unlabelled: The characteristics of commercially available thermochromic ink pens have been studied and described since their appearance in 2006. The wide variety of brands and models now available warrants further study using an expanded sample size, to differentiate the general characteristics from specific characteristics. Herein, the ink strokes of 15 pens purchased in the province of Córdoba, Argentina were studied.

View Article and Find Full Text PDF

The human microbiome exerts profound influence over various biological processes within the body. Unlike many host determinants, it represents a readily accessible target for manipulation to promote health benefits. However, existing commercial microbiome-directed products often exhibit low efficacy.

View Article and Find Full Text PDF

Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.

View Article and Find Full Text PDF

Self-Organized Protonic Conductive Nanochannel Arrays for Ultra-High-Density Data Storage.

Nano Lett

January 2025

National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!